
NASA Contractor Report 201636

ICASE Report No. 96-74

/ !j /

ICA
EFFICIENT PROCESS MIGRATION FOR

PARALLEL PROCESSING ON NON-DEDICATED

NETWORKS OF WORKSTATIONS

Kasidit Chanchio

Xian-He Sun

NASA Contract No. NASI-19480
December 1996

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Efficient Process Migration

for

Parallel Processing on

Non-Dedicated Networks of Workstations

Kasidit Chanchio Xian-He Sun*

Department of Computer Science

Louisiana State University

Baton Rouge, LA 70803-4020

Abstract

This paper presents the design and preliminary implementation of MpPVM, a soft-

ware system that supports process migration for PVM application programs in a non-

dedicated heterogeneous computing environment. New concepts of migration point as

well as migration point analysis and necessary data analysis are introduced. In MpPVM,

process migrations occur only at previously inserted migration points. Migration point

analysis determines appropriate locations to insert migration points; whereas, necessary

data analysis provides a minimum set of variables to be transferred at each migration

point. A new methodology to perform reliable point-to-point data communications in a

migration environment is also discussed. Finally, a preliminary implementation of Mp-

PVM and its experimental results are presented, showing the correctness and promising

performance of our process migration mechanism in a scalable non-dedicated heteroge-

neous computing environment. While MpPVM is developed on top of PVM, the process

migration methodology introduced in this study is general and can be applied to any

distributed software environment.

"]'his research was supported in part by the National Aeronautics and Space Administration under NASA contract

No. NAS1-19480 while the second author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001, and by NASA contract No.

NAS1-1672 and Louisiana Education Quality Support Fund.

1 Introduction

The construction of national high-speed communication networks, or the so-called "information

highway", marks the beginning of a new era of computing in which communication plays a ma-

jor role. Until recently, computing resources on networks remained separate units. Now, while

the World Wide Web and electronic mail are changing the way people do business, heterogeneous

networks of computers are becoming commonplace in high-performance computing. Several com-

mercial and non-commercial software systems, such as Express, MPI, the P4 system, and PVM

[1, 2, 3], have been developed to support distributed computing. However, given the current success

of these software systems, experiences have shown that process migration is essential for achieving

guaranteed performance in a non-dedicated distributed computing environment and for establishing

the standard for mainstream parallel and distributed computing.

In a non-dedicated environment, computers are privately owned. Individual owners do not

want to see their systems being saturated by others when they need them. To have a motivation to

participate in a network, the individual owners need their resources readily available when they are

trying to work. This means the privately owned machines may only be used for parallel processing

on an "availability" basis. The uncertainty of the "availability" of an individual machine makes the

performance of each individual machine non-deterministic. In addition, a non-dedicated network

of computers is more likely to be heterogeneous than is a dedicated system. "Availability" and

"heterogeneity" are new issues which do not arise in tightly coupled parallel systems. Competition

for computing resources does not lead to guaranteed high performance. "Stealing" of computing

cycles, instead of competing for computing cycles, is a more reasonable way to achieve parallel pro-

cessing in a non-dedicated parallel and distributed environment. The process migration mechanism

is proposed as a solution to simultaneously utilizing idle machines and maintaining high capabilities

for local computations. The simple idea underlying this mechanism is that when the workload of

a distributed system becomes imbalanced, parallel processes residing on overloaded machines are

migrated to other available machines.

PVM [1] is a popular software system that lets programmers utilize computing resources in a dis-

tributed environment. It allows application developers to create virtual machines, and to run their

parallel processes (or tasks) over a network of computers. Since the virtual machines can be created

on various parallel platforms, application developers can also exploit heterogeneous resources avail-

able in a virtual computing environment. The MpPVM (Migration-point based PVM) software

system proposed in this study is designed to support process migration in a non-dedicated, het-

erogeneous computing environment. Along with the migration mechanism, we present novel ideas

of migration point and necessary data analysis. Migration point analysis is how MpPVM inserts

its migration points to the PVM source file; whereas, necessary data analysis is a methodology to

reduce the size of data that must be transferred during the migration. We also propose a method-

ology to perform reliable indirect communications among processes in a migration environment.

Experimental results are presented to verify the applicability of the design and to demonstrate the

performance gain of process migration. Measured results show that under the MpPVM system the

processmigration cost is small compared with computing and communication cost; the performance

gain of process migration is significant; and the MpPVM system is scalable in the sense that the

migration cost does not increase with the ensemble size. While the experimental results are only

for the examined application and environment, they demonstrate the feasibility and high potential

of process migration in a non-dedicated heterogeneous environment.

This paper is organized as follows. Background and related work is presented in Section 2.

An overview of the structure of MpPVM is introduced in Section 3. In Section 4, the design and

functionalities of important components of MpPVM, including the precompiler, migration point

analysis, necessary data analysis, migration macros and variables, and the interactions of these

macros during process migration are described. In Section 5, the interaction between process

migration and resource management, along with a methodology to handle data communication

among processes in a migration environment, are discussed. Preliminary implementations and

experimental results are given in Section 6. Finally, Section ? gives a conclusion of current results

and a discussion of future work.

2 Related Work

Despite the fact that the importance of load balance in a non-dedicated environment has been

recognized, none of the existing distributed software systems support efficient process migration in

a heterogeneous environment. Many attempts such as Condor, MPVM, ULP and MIST [4, 5, 6]

have been made recently to support process migration. These current attempts are for homogeneous

computing only, which severely limits their applicability in an actual environment.

2.1 Background

There are several software systems available to support parallel processing in a distributed envi-

ronment [1]. Among these, MPI [3] and PVM [1] are the most popular software environments. The

migration approach proposed in MpPVM can be applied to any existing message passing software.

We chose to implement the migration mechanism on PVM instead of MPI because of the following

reasons:

PVM has a single implementation and its structure is well-defined. On the other hand, MPI

has many different implementations such as LAM [7], MPICH, and UNIFY [8]. Since our work

is specifically dependent on implementation, supporting process migration in MPI application

codes either would limit our effort to a smaller group of users, if migration enhancement is

limited to a particular implementation of MPI, or would be exhausting, if all the different

implementations have to attacked for heterogeneous computing.

Some MPI implementations are built on top of PVM, such as MPICH/PVM, or integrated into

PVM such as UNIFY. Thus, if we build our prototype on PVM, the idea and implementation

can be extended to MPI systems as well.

• Thenature of MPI processes is relatively static compared to those of PVM. Current version of

MPI does not allow process creation at run-time and has static group membership. Processes

in MpPVM can be dynamically created, terminated, or migrated from one machine to another.

Therefore, it is more natural to incorporate our ideas into PVM than MPI.

2.2 Transparency and Heterogeneity

Unlike MPVM and ULP [5] developed at Oregon Institute of Science & Technology,migration in

MpPVM will be performed at Migration Points (Mp) only. These Mps will be inserted automatically

by the precompiler. Users can also specify their migration points. In the latter case, the precompiler

will adjust the arrangement of its Mps to fit the user's needs and the needs of the underlying

computing environment.

Process migration is transparent to users of MpPVM. The precompiler will modify the PVM

source code to support the migration mechanism. All necessary definitions and operations are

inserted into the input file by the precompiler and require no work from the user. With the use

of this precompiler, PVM's applications are able to run on MpPVM as well. Note that MpPVM

also allows users to customize the automatically generated migration operations in their application

programs to improve the performance of their parallel computations. With the awareness of process

migration during parallel execution, the users can help the precompiler select the migration points

which are most suitable to the structure of their application.

MpPVM supports process migration in a heterogeneous computing environment. The precom-

piler will add migration definitions to its input source program. When a migration event occurs,

a process will perform migration operations at a high level by executing a set of programming

language statements. Therefore, a process can migrate from one machine to another without any

restriction with respect to the machines' architectures.

In MPVM and ULP, although the migrations can be operated at any point within an application

program, they do not support migration in a heterogeneous environment. In their designs, the

migrations are performed at low level by transferring data, stack, and heap segments of the execution

code to another machine. Thus, source and target machines for migration events must be binary

compatible.

2.3 Migration Point and Checkpoint

In DOME [9] and Condor [10] developed at CMU and University of Wisconsin, Madison, respec-

tively, checkpointing can be used for both fault-tolerance and process migration purposes. DOME

uses its high-level checkpointing scheme mostly for fault-tolerance purposes. However, because

the checkpointed processes can be restarted at other machines in a heterogeneous environment,

DOME's checkpointing scheme can be used for process migration as well. In Condor, checkpoint-

ing is used for process migration. During a migration, Condor creates a checkpoint file before

terminating the original process. This checkpoint file will be used when the process is restarted at

a new machine.

Checkpointing involves the access of file system and disk, that slows down the migration process.

More importantly, checkpointing lacks of the ability to handle network communication. In order to

maintain a consistent global state, some processes that communicated with the migrating process

have to be rolled back to their last saved checkpoints, which might cause other processes to roll back,

and so on, until the program might be rolled back to its beginning. This effect is known as Domino

Effect [11]. Checkpointing achieves fault tolerance but not efllcience. It is not the best way to

support process migration in network computing. Migration and checkpointing schemes should be

designed separately for best performance. In MpPVM, necessary data is transferred directly from

migrating machine to migrated machine through network communication. The compiler-assisted

and user-directed concepts will be applied to migration points instead of checkpoints.

In the user-directed version of Libckpt, developed at University of Tennessee [12], memory

exclusion concepts are applied to reduce memory overhead when saving to its checkpoint file during

the execution of a process. Similarly, to minimize memory overhead, MpPVM has its own memory

analysis to find out the necessary set of variables for each migration point. This set of variables

is the smallest set of data to be transferred across the machines during the migration. Since the

usage of checkpoints and migration points is very different, MpPVM's memory analysis is totally

different from that of Libckpt.

3 Overview of MpPVM

MpPVM has three main components:

MCL (MpPVM's precompiler), the precompiler that translates PVM source code into Mp-

PVM source code by dividing its input program into several subsequences of instructions and

inserting migration points to separate those subsequences from each other. MCL will perform

migration point analysis and necessary data analysis to determine the locations of migration

points in the source program and to evaluate the minimum set of variables to be transferred at

each migration point, respectively. Finally, MCL will insert migration operations, including

global definitions and macros, to the source program to produce its output.

Mpd (MpPVM's daemon), the modified version of pvmd, which handles reliable point-to-

point, indirect message passing mechanism in the migration environment. It also provides

a protocol to support data communication among the scheduler, the migrating process, and

the new process on an idle machine at a migration event.

Mlibpvm (MpPVM's library), the modified version of libpvm, which provides programming

language subroutines for the application programs and for the scheduler (the resource man-

ager).

To develop software on MpPVM, users must feed an application program written in C or

FORTRAN to the precompiler (see Figure 1). The precompiler will produce two output files, a

map file (MAPF) and a modified file (MODF). The map file (MAPF) will show locations of every

PVM source code MODF

p_er _'_ MAPF

(4)

Figure 1. Basic steps in developing application programs for MpPVM.

migration point. If the users are not satisfied, they may change this map file and then input it to

the precompiler again. The modified file (MODF) is the original PVM source file that was modified

by the precompiler (MCL) to support process migration. MCL will analyze the structure of the

program and then insert the necessary definitions and macros at every migration point (Mp). After

getting acceptable MAPF and MODF files, the MODF will be compiled (using a regular Fortran

or C compiler) and linked with Mlibpvm, the MpPVM library, to create the MpPVM executable

file.

Before running the applications, Mpd and the scheduler must be running in a parallel computing

environment. Like pvmd, Mpd is a daemon process that runs on every computer. The cooperation

of every Mpd in the system can be viewed as a logical computing unit called a virtual machine. On

the other hand, the scheduler is a process (or processes) that monitors and controls the workload

of the environment. At run-time, applications will request services from the virtual machine and

the scheduler. The virtual machine provides indirect message passing services for the applications;

while, the scheduler handles requests such as process creation, termination, and other process

operations that affect the workload and configuration of the system.

When load imbalance occurs, processes may be migrated to solve the problem. In migrating a

process, the scheduler will determine the migrating process and choose one of the idle or lightly

loaded machines to be the destination of the migration. Then, the scheduler will signal the desti-

nation machine to load the equivalent MpPVM executable file, the binary files that were generated

from the same MODF file as that of the migrating process, into its system. In a heterogeneous

environment, these equivalent execution files have the same functionalities and execution behaviors

since they are generated from the same source code. This loading operation is called process initial-

ization. According to the definitions and operations generated in the MODF file, the loaded process

will wait for the connection from the migrating process. Usually, the initialization is performed

when the scheduler wants to migrate a process. In our model, the process can also be initialized

at any time before the migration is needed. This situation is called pre--initialization. Since the

destinations of process migration are one of the idle or lightly-loaded machines, pre-initialization

will not effect other users in the system. The strategies to manage pre-initialization depend mostly

on the design of the scheduler. Although the implementation detail of the scheduler is not a focus

of this study, pr_initialization is recommended as an option to reduce migration overhead.

After initialization,theschedulerwill send information of the initialized process to the migrating

process. The migrating process will make a direct TCP connection to the initialized process and

start transferring its data. When the migration is finished, the migrating process will terminate.

The execution will be resumed by the new process at the migration point on the destination machine.

4 MCL

In this section, we describe the functionalities of MCL including the migration point analysis and

data analysis. We show the definitions and macros generated in the MODF file and illustrate how

these macros work during process migration.

4.1 Migration Point Analysis

MCL adopts a new approach for migration point analysis which is different from any existing

software environment. MCL views each programming language statement as an instruction. The

instructions are classified into three types: control, plain, and library instruction. Control in-

struction consists of branching, loop, and subroutine instructions. Branching instructions are the

conditional statements such as the IF-THEN-ELSE or CASE statements in FORTRAN or C. Loop

instructions are those that create repetitive executions such as whileO and [or() loops in C, and

do... continue loops in FORTRAN. A subroutine instruction is a subroutine calling statement in

the language. Plain instructions are the instructions or operations that come with the programming

language such as +, -, *,/, etc. Finally, library instructions are subroutines or operations defined

in a standard library, such as functions and subroutines in stdlib or Mlibpvm, etc.

For simplicity, in our analysis model for automatic migration-point insertion, we assume that

every control, plain, and library instruction requires a fixed number of CPU cycles for its execution.

Arithmetic (+,-,*,/, etc.), logical (.AND., .OR., etc.), relational (.EQ., .LE., .GE., etc.) operations

and other instructions that do not depend on run-time information are examples of these types

of instructions. According to the assumptions, every plain or library instruction in this model is

associated with a constant value, Ci, which represents its approximate execution cost. To perform

automatic insertion of migration points, users have to specify a maximum cumulative Execution

Cost (EC) value between any two migration points. Then, the following strategies are applied:

,

.

In a sequence of plain and library instructions, MCL will insert a migration point at the loca-

tion where the cumulative execution cost value, counting from the beginning of the sequence

or the previous Mp, is equal to or exceeds the EC value. After the insertion, the execution

cost counter will be reset. Then, MCL will continue its analysis at the next instruction right

after the new Mp.

When MCL encounters a branching instruction such as an "if-then-else" statement, it will

assign different counters to accumulate execution costs for each branch. Then, MCL will

analyze the body of each branch separately. At the exit of the branching instruction, the

maximum accumulated cost counter among these branches will be used at the continuing

analysis in the next instruction.

3. In case of loop, if the number of iterations can be determined at compile-time, the insertion

of migration points will depend on relationship of the Total execution Cost (TC) of the loop

and the value of EC. The TC value is simply defined by the multiplication of the number of

iterations (N) and the Total execution cost of the loop Body (TB).

In case TB __ EC, MCL will normally enter the loop and accumulate the execution cost.

The same set of strategies will be applied again when MCL faces new instructions in the

body of the loop. At the end of the loop, MCL will just continue its analysis at instructions

outside of the loop body. On the other hand, if TB < EC, there are two cases to consider.

First, if TC _ EC, MCL will put a migration point and a special index at the end of the

loop body. At a migration event, this special index will be used by the migration macros to

determine the number of iterations of the loop that can be migrated. This scheme is applied

in case the loop has a small number of instructions but a large number of iterations. Second,

if TC < EC, MCL will just accumulate the TC value and skip the loop.

In case the number of iterations cannot be determined, if TB _ EC, analysis as described

above will be applied. Otherwise, MCL will assume that TC >_ EC and apply the same

strategy used for the known number of iterations.

4. From the last Mp to the end of the program, the cumulative execution cost must be at least

equal to the EC value.

5. In case of subroutine calls, if the Total execution cost of the Subroutine body (TS) is less

than EC, MCL will skip the subroutine call and accumulate the TS value. In this study, MCL

will ignore recursive calls in the subroutine body by continuing its analysis at the instruction

after the calls.

If TS __ EC, MCL knows that at least a migration point will be inserted in the subroutine

body. Thus, it will insert a migration point right before the function call to keep track of

subroutine calling information at the migration event. The functionality of this migration

point will be clarified in Section 4.3. In the subroutine, MCL will reset its cost counter and

start the new analysis at the beginning of the subroutine body. After every subroutine call,

MCL will also reset its cost counter and start the analysis again.

In applying the above rules, higher priority is given to the rule with higher number. For example,

the fourth rule has greater priority than the third, and so on.

In Figure 2, we give a simple example of how to put migration points into a program. Let

E be an expression and I0 to 19 and Iso to Is3 be plain or library instructions. We assume that

each instruction Ii has its relative execution cost Ci, where i E {0... 9} U (sO... s2}. Mi, where

i E {0--. 5}, represents the location of a migration point in the source file.

PROGRAM I_I_¢N.r_ON C06T ClIT'II_.IA

Me

M I

M2

M3

i 0 CO

I I CI

1 2 C I

I 3 C3

for E do C g

I 4 C4

I s Cs

I 6 C 6

I_ C T

18 C8

CALL SUII0

I 9 C9

end

StY)

t'"I it

MS

C d

C *1

C._

M e : RULE I) (Co+C I+C 2>_EC)

M! :RU]LEMkl) (C_+CI_÷C_.C j_,_gC)

M 3 :RULE.3_I) (C 6 *C.I:_EC)

M_ : RULE 5)

M s : RI..'_._I) (C_ +C jI_EC)

Figure 2. A simple example of how to insert migration points.

Let us start the analysis from the beginning of the program. After scanning through the first

three instructions, MCL found that Co +C1 +C2 >_ EC. Thus, MCL inserts the first Mp at Mo using

the first rule. After that, MCL reset its cost counter and starts to accumulate the execution cost

from/3. When MCL encounters a "for" loop, the third rule is applied. Since CE+C4+Cs+C6 > EC

(or TB > EC), MCL simply enters the loop and continues its analysis. Within the loop, a new Mp

is put at M1 because C3 + CE ÷ C4 -4-(7,5 >_ EC. From xs to the end of the loop, there is only one

instruction (/6) and its execution cost is less than the EC value. Thus, according to the third rule,

MCL jumps out of the loop and continues its consideration at 17. Since Cs ÷ C7 >_ EC, MCL puts

an Mp at M2. While counting the execution cost from/8, MCL encounters a subroutine call and

the fifth rule is employed. Since the total execution cost of subroutine body (TS),/so + Is1 + Is2, is

greater than EC, MCL knows that at least one migration point will be inserted into the subroutine

body. Therefore, a new Mp is inserted at M3 to keep track of function calls during a migration event.

In the subroutine body, MCL starts collecting execution costs of instructions in the subroutine and

then perform the same analysis as in the main function. Thus, according to the first rule, a new

Mp is inserted at M5 because Cso + Csl >_ EC.

After that, MCL will reset its cost counter and start the analysis from 19. Suppose that

C9 >_ EC, according to the first rule, an Mp should be inserted right after/9, which is the end

of the program. Obviously, this situation conflicts with the fourth rule. Because the fourth rule

has more priority than the first one, MCL will not insert a migration point after 19. This scheme

automatically prevents a process from being migrated to a new machine when its execution is

almost finished.

8

4.2 Data Analysis

The goal of data analysis is to minimize the data transfer time during process migration. We do

this by conducting necessary data analysis. MCL finds the set of variables that have been initialized

before the migration point and the set of variables that will be referred to by other instructions

after the migration point. In Figure 3, a migration point (Mp) and its data analysis are given.

In this example the two sets of variables would be {a, b, x) and (x, b, c, y}, respectively. The

intersection of these two sets, {x, b), gives us the minimal set of data needed to be migrated at

Mp.

int a, b, c, x, y, z;

am_){

= O; Assigned variables Referred variables
= O; _.

=a÷b; -- { a,b,x } { x, b, c, y }

Mp :
c=1;

y [=c+x;z =y-b;

a=5;
Necessary set of variables at Mp is { x, b }

Figure 3. A simple example of necessary data analysis.

The idea behind the data analysis methodology is that the valid set of variables to be migrated

should be those that have already been initialized before the migration point and will be used by

other instructions after the migration is finished.

4.2.1 Assigned and Referred Variables

In the data analysis, we define two sets of variables: the Assigned Variable set and the Referred

Variable set. The Assigned Variable (AV) set is a set of variables that are assigned values after the

execution of an instruction, expressions, or a sequence of instructions; while, the Referred Variable

(RV) set is a set of variables whoes values are used during the execution.

We classify variables in C programs into two types: the fixed and pointer variables. The fixed

variables are whose are bound to single memory addresses at run-time. A particular memory space

(or a storage) will be allocated for a variable to store its values. The variable will refer to the

start location of that memory space for all of its lifetime. Examples of these variables are those

declared at examples 1, 2, 3, 7, 10, and 11 in Table 1. On the other hand, we call the variables

that can dynamically change their binding to memory addresses at run-time as pointer variables.

Since a pointer is a variable that stores the address of a memory storage, its address content can

be changed at any time during the execution of the program. Examples of pointer variabtes are

shown at examples 4, 5, and 9 in Table 1.

The difference between the fixed-size and pointer variables effects the scheme to extract the AV

9

Example Variables Instructions AV RV

1 int a, b, c; a = b + c; {a} (b, c}

2 int d[10], i_10]; d[i] =a+f_]; {d} {i,j,a,f}

3 struct.., g, h; g.x = h.y + 2; {g} {h}

4 int *p; p -- &d[0] + 5; (p} (d}

5 struct... *q; ,(p-bl)---*(q- >x); (p} (p,q}

6 ,(q- > x) = ,(p + 1); {q} {p,q}
7 int *r[10]; r[0] = d; (r} (d}

s ,r[0] = dill; {r} {d}
9 int (*s)[10]; s = t; {s} {t}
10 int t[2][10]; s[0][0]= a; {s} {_,a}
11 int u[2][10]; s = u; {s} {u}
12 _[0][0]= b; {s} {_,b)

Table 1. Examples of high-level instructions with their AV and RV sets.

and RV sets from a high-level instruction. If we assign a value to the storage of a fixed variable, the

variable name will be put to the AV set. On the other hand, if the value is assigned to the storage

of a pointer variable, the pointer name will be assigned to both the AV and RV sets. Since the

address of a storage stored in the pointer variable can be changed during execution, the program

will have to refer to the address of the pointer first before assigning a value to its storage.

In Table 1, Example 1 shows a simple assignment statement where the integer variable a, b,

and c have their names bounded to fixed addresses. The binding will not change during a program

execution. Thus, we can directly access the storages by referring their names. The arrays and

structures in Examples 2 and 3 axe also fixed variables since their names cannot be altered at

run-time. On the other hand, variables p and q declared in Examples 4 and 5, respectively, are

pointer variables. Their contents could be changed during program execution as shown in Example

4. Therefore, we need to refer to their address content first before accessing the storage that the

address points to. As the results, p is put in both the AV and RV sets in Example 5, and q is

also put in both sets in Example 6. In Example 7, r is declared as an array of pointers. Since r is

bounded to a fixed-size storage, it is a fixed variable. We can refer to its storage directly. Thus,

we just put r in the AV set in Example 8. From Example 9 to 12, s is declared as a pointer to

an integer array of size 10. Since s is a pointer variable its address content could be assigned to

various storages with the same type as shown in Example 9 and 11. Thus, s is put in both the AV

and RV sets in Examples 10 and 12.

4.2.2 Necessary Variables

According to the basic ideas of data analysis, the Necessary Variable (NV) set at a migration point

is defined by the intersection of the AV set for instructions that execute before the migration point

and the RV set for instructions that execute after the migration point.

10

Wenow define the AV, RV, and NV sets for the different language constructs including sequen-

tial, branching, loop, and subroutine. The notation Bi _ Bj is used extensively in our analysis

to represent an execution flow from Bi to Bj where Bi and Bj are instructions or sequences of

instructions. We also let AM and RVi represent AV and RV sets of Bi, respectively. Note that i

and j are any integer or characters.

In case of sequential code, let B0 and B1 be two continuing sequences of instructions that are

separated by a migration point Mp. According to the definition of the NV set, we can describe the

NV set at the migration point Mp as AVo N RV1. The total AV and RV sets of this sequential code

are AVo 0 AV1 and R_ U RV1, respectively.

(a) Branching (c) Subroutines

B _ Bo B1 B2

S 1 --_ if (E){ Sll }eZse{ 812)

Bll -+ Blll Mpl Bl12

B12 --+ B121 Mp2 B122

(b) Loop

B --+ B0 B1 B2

B1 --+ for (E){ Bll Mpl B12 }

M(fpm) -->B1 fo(apo) B2 Mpo B3 fo(apl) B4
fo(fPIo) -_ B01 fl(ap2) B02 h(ap3) B03 f4(ap4) B04 fo(aP5) B05

fl(fPI1) _ Bll f2(ap6) fa(apT) B12
/2(/PI2) _ B21/3(aps) B22

f3(fP/3) _ B31 fo(apg) fl(aplo) B32
f4(fPf4) _ B41 fl(apll) B42

Table 2. Examples of language constructs. M, B, and Bi, where i is any integer or character or

combination thereof, represent sequences of instructions, while fi and Mpi denote a function call

and a migration point, respectively.

Table 2 shows examples of branching, loop, and subroutine structures that are discussed in

our analysis. The branching structure is described in Table 2(a). In this example, we assume

that the migration points Mpl and Mp2 are inserted into the sequences of instructions Bll and

B12, respectively. Mpl divides Bll into two continuing sequences of instructions Blll and Bl12.

Likewise, Mp2 divides B12 into B121 and B122.

Since the execution flow of B1 could be either E =_ Bll or E =_ B12, the variables in E, Bll,

and B12 will be used in defining the AV1 and RV1 sets. Therefore, the AV1 and RV1 sets are

AV1 = AVE 0 AV11 0 AV12 and RV1 = RVE U RV11 0 RV12, respectively. Since the execution flow

that pass Mpl is B0 =_ E _ BIll =_ Bl12 =_ B2 and the flow that pass Mp2 is B0 =_ E =_ B121 ==_

B122 =_ B2, the NV1 at Mpl as well as the NV2 set at Mp2 can be described as

NV1 : (AVo tJ AVE U AVH1) N (RVl12 U RV2),

NV2 = (AVo U AVE 0 AV121) N (RV122 O RV2).

We present a loop structure in Table 2(b). We also assume that the migration point Mpl

is inserted into the loop body, which divides the body into two sequences of instructions: Bll

and B12. According to the given structure, no matter how many times the execution of loop B1

repeats, only E, Bll, and B12 are executed in the execution flow. Thus, AV1 and RV1 are defined

11

by AV1 = AVE U AVII U AVI2 and RVI = RIFE U RVll U RV12, respectively.

Since the execution flow in the loop B1 is E =_ Bll =_ B12 =_ E =_ Bll =_ B12 =*""'" =_ E, the

expression and instructions including E, Bit, and B12 could be executed either before or after the

migration point Mpl. Therefore, the NVI set at migration point Mpl is

NV1 = (AVo U AVE U AVll U AVI2) N (RVII U RVI2 U RVE U RV2).

The precompiler will analyze contents of each function in the application program separately.

First, it will determine the AV and RV sets for every instruction, and then consider the NV sets of

every migration point in the function body. In the case that the instruction is a function call, we

first analyze the actual parameters and then the contents of the function.

Every variable name in the actual parameters that passes pointers or memory addresses to

the function are assigned to the AV and RV sets because their values could be altered during the

execution of the function. On the other hand, the actual parameters that are passed by value are

put in the RV set. Since the values are copied to the function, there would be no changes to the

parameters after the function call is finished.

We divide contents of a function into two parts: a header and a body. The function header

consists of a function name and its formal parameters. Since the formal parameters are assigned

values at every function entry, we put each formal parameter into the AV set. In the function body,

the analysis described in the previous section for the sequential, branching, and loop structures is

applied. However, different analysis is needed when recursive subroutine calls are encountered. We

demonstrate the scheme to analyze the AV and RV sets of a function call as follows.

Table 2(c) shows an example of a migration point Mpo being inserted into a function M that

has function calls (fi) where 0 < i < 4 in its body. We let fp_ where i = m or 0 < i < 4 be sets

of formal parameters; whereas, the apj where 0 < j < 11 be sets of actual parameters. We also

suppose that AVfm and RVfr_ represent the AV and RV sets of fPi, respectively. Likewise, the

AVapj and RVapj are the notations for the AV and RV sets of ap;. According to the definition of

the function M, we can define the NVo set at Mpo as

NVo=(AVf_n-n U AV1 U AVfo U AVapo U AV2) N (RV3 U RVfo U RVapl U RV4).

Every formal parameter in the function M is put in AV.fpm at the entry of the function. At the

function call fo(apo), we can find out the AV set of the actual parameters apo (AVa_) by considering

how they are passed. We can use the same analysis to obtain RVapl at the function call fo(apl).

We let AM and R_ represent the AV and RV sets of other instructions that are not subroutine

calls (B_).

According to scope rules, only the global variables and the actual parameters can have their

values (or any values in the data structure that they can refer to) accessed in a function call

instruction. Therefore, the set of global variables and actual parameters is the superset of the AV

and RV sets of the function call.

12

Sincewe already have the AV and RV sets of actual parameters of fo(apo) and fo(apl), we

only need to derive the set of global variables that are assigned values (AVIo) or referred to (RVIo)

during execution of the function. To find the AVIo and RV.fo sets, we can recursively draw infinite

execution flows of]0. However, no matter how many times the direct or indirect recursions occur

in the execution, the maximum set of Bi that could be executed in this structure is

{Boz, B02, B03, B04, B05, Bn, B12, B21, B22, B4z, B42, B31, B32}.

Likewise, the maximum set of function calls that could occur is

{fl(ap2), f2(ap3), f4(ap5), fo(ap5), f2(ap6), f3(ap7), f3(aps), fo(ap9), fl(aplo), fl(apll)} •

Now we know all the instructions and function calls that the recursion can possibly go through.

What we have to do now is just to analyze the global variables that appear in these instructions.

Let GAVi and GRV_ be the AV and RV sets of global variables in Bi, respectively. Also, we let

GAVapi and GRVapi represent the AV and RV sets of the global variables in the actual parameters

api where 0 < i < 11. As a consequence, we can then define AVjo and RVfo as

AVIo

RVlo

= (GAVo, U GAV02 U GAVo3 U GAV04 U GAV05 U GAV, I to GAVn

U GAV21 U GAV22 U GAV41 to GAV42 tJ GAV31 LJ GAV32)

U (GAVap2 U GAVap3 U GAVa_ O GAVap5 to GAVap6 U GAVap7

U GAVaps U GAVapo U GAVaplO U GAVapn),

= (GRV01 U GRV02 U GRV03 to GRV04 U GRV05 U GRVn tO GRV12

to GRV21 to GRV22 U GRV41 to GRV42 U GRV31 U GRV32)

U (GRVap2 (J GRVap3 U GRVap4 13 GRVap5 U GRVap6 U GRVap7

U GRVaps to GRVap9 U GRVaplO U GRVapn).

After getting the NV set of each migration point, MCL will classify the variables in the NV set

into two types: the necessary local variables and global variables. The necessary local wariables

(NVI) are those in the NV set defined locally in the function that contain the migration point. The

necessary global wariables (NVg) are the variables in the NV set declared as global variables in the

program.

4.3 Migration Macros and Variables.

After defining migration points and their necessary variables, MCL will insert special global vari-

ables and macros to create its output (the MODF file). These global variables and macros are

reserved by MCL and must be different from those defined by a user. These variables and macros

are built for two major purposes: to migrate a process from the original machine, and to resume

13

the execution of the process at the destination machine.

mllN){

me mb_O

mlllrl4

)

fh.ll_l

d iiIIso

Wl illi_l

}

:<rc_ i4_vG •

Mt :<_rVLmd_ •

I

}

mtaX

M_I ,<NYI. II_reVC •

_n RdJSO

M4 :<m'Yb I_PII'C •

ma _)

MP :<_rLaid_ •

}

NVIL: g4scsmor7 .S_ d'LocJ Yarlsbla

NVG: N,Kms_r_ Set of Global Va_iec

Figure 4. An example of how MCL puts its special purpose macros and variables to a source

program.

Figure 4 shows examples of a source file, a MAPF file, and a MODF file. After creating the

MAPF file, MCL will generate the MODF file by inserting global variables and macros. The global

variables include a Control Stack (CS), a Data Stack (DS), an Execution Flag (EF), and other

variables such as those for inter-process communications at the top of the file. The control stack

(CS) is used to keep track of function calls before the migration. During a migration, the name of

the migration point where the migration occurs and the names of the migration points associated

with every function called before the migration will be pushed into the control stack. We also

need to maintain a data stack (DS) to store the necessary local and global data at the point where

migration occurs and to keep the necessary data for the names of migration points stored in the

CS. Although stored in different stacks, each control and data item must tightly correspond to one

another.

The Execution Flag is a variable that stores a signal sent from the scheduler. Four types of flags

are defined: normal (NOR), resuming (RES), migrating (MIG), and stack (STK). The normal flag

(NOR) is the default flag. It tells the process to execute normally on the current machine. The

resuming flag (RES) is assigned to the initialized process by the scheduler. The initialized process

will wait for the connection from the migrating process. The migrating flag (MIG) notifies the

migrating process to start the migration at the nearest coming migration point. Finally, the stack

(STK) flag is used internally by the migrating process to keep information regarding function calls

occurring before process migration.

After inserting variables on the MODF file, MCL will insert migration macros at various loca-

14

WAITMACRO

- get EF value from Scheduler;

if (EF == RES){

-acceptTCP connectionand

receive CS and DS from the

migrating process;

)

JMP_MACRO

if(EF _ RES){

-pop Mp name from CS;

-Jump to thatLabel in

the function;

}

MIG_MACRO

if(EF --'=MIG){

-push cu_ent Mp name to CS;

-push NV to DS;

- if(the Mp label is in mainO){

- request TCP connection and

send CS and DS to the new

process.

-exit() the program;

else[

- set El= to STK;

- return0 to the caller function;

} }
}

else if(EF== RES){

-pop NV set;

- if(size of CS is zero){

-set El: from RES to NOR;

}
}

*** Note that NV stands for Necessary Variable set.

STK_MACRO

if(EF _-_ STK){

-push current Mp name to CS;

-push NV to DS;

-if(the Mp label is in main()){

-request TCP connection and

send CS and DS to the new

process;

-exit() the program;

}

else{

-return() to the caller function;

}

Figure 5. Pseudo code macros that support process migration.

15

tions in the source program. During a process migration, these macros will collect CS and DS stacks,

transfer data across machines, and restore data to the appropriate variables in the destination pro-

cess. These macros are WAIT_MACRO, JMP_MACRO, MIGAVIACRO, and STK_MACRO. MCL

will put WAIT_MACRO at the beginning of the main function to wait for the connection and the

contents of CS and DS from the migrating process. JMP_MACRO is put right after WAIT_MACRO

in the main function and at the beginning of the body of other functions. MIGAVIACRO is inserted

at every migration point. In case the migration point was inserted before the function call to keep

track of subroutine calling instructions, a STKAVIACRO will be inserted right after the function

call associated by those migration points. The pseudo codes of these macros are shown in Figure

5.

At a migration event, the scheduler will initialize a process on an idle machine. The EF flag of

the new process is set to RES. Then, the program will wait for a connection from the migrating

process. After that the scheduler will send a signal to the migrating process to start migration

operations.

Jg

(I)

MI
mblO

M2
adl rob20

(5)

Mt

-- STKMACRO _ STK_MACRO

N N

(4)

_P. WAITMACRO

JMP MACRO

MIG MACRO

call mblO _ .M2 t... : _MACRO

emil $1620

[_ : abmmlNed eule.

: CS mill_ dma flew

: Cemr_ flew

call sub:'O
M s :MIG_MAC_O

/
s'rK MACRO

N "N
} }

sub/,(){

JMP_MACRO /-_ _TJ)_

MI, : G_ CI[

call rob20 MS _ : MIG_MACItO

Figure 6. An example of how MpPVM conducts process migration.

To illustrate the migration operation, we will refer to the MODF file in Figure 4 and consider

the situation in Figure 6. At (1) the process starts its execution from main() and then invokes

subl(), sub2(), and sub20 again as described in Figure 6. While executing instructions between

M4 and Ms, the scheduler signals the migrating process to change the EF flag from NOR to MIG

(2). The process will continue its execution until it reaches Ms. Then it will enter MIG_MACRO.

16

Becausethe EF flag is MIG, the process will push the label M5 to the CS stack and push NV

(necessary variables) at M5 to the DS stack. After that, the process will change the EF flag to

STK and then abandon the rest of sub2 0 by returning to its caller function (3). At the caller

function, the process will enter STK_MACRO in which it will save M4 and its NV to CS and DS

stacks respectively. Then, it will return to subl(), its caller. The process will repeat the same action

until it reaches the main() function. At the main() function, the instructions in STKAVIACRO will

be executed. However, at this point, not only the migration label M1 and the NV at the main()

function will be saved to the stacks, but the process will also send the CS and DS stacks to a new

process in the destination machine (4).

After being initialized by the scheduler, the new process will start its execution and enter

WAIT_MACRO. In this MACRO, since the default EF flag of the initialized process is RES, the

process will wait for the connection and for the contents of CS and DS stacks from the migrating

process. After getting this information, the process will enter JMP._MACRO. Then, the label name

(M1) will be popped from the CS staz.k. The execution will be transferred to the location of

that label name by using a goto statement (5)- At the migration point M1, the process enters

MIGAVIACRO with the EF value of RES. It then pops appropriate values to variables in the NV.

After that, the process will call subl 0 as in (6). In subl 0 the instruction in JMP..MACRO will

pop M2 from the CS stack, and then jump to M2 . At M2, the value of the NV are popped from

DS stack and then sub2() is called. The JMPAVIACRO in sub2 0 will transfer the execution to M4.

The process will pop DS stack and then call sub2 0 again. In the new sub2(), the execution flow

will pop the migration point from the CS stack, jump to Ms, and then pop values of variables in

NV set from the DS stack. Finally, the EF flag will be set to NOR and the process continues its

execution (7).

5 Mpd, Mlibpvm, and Scheduler

Mpd is a modified version of pvmd. It has been modified to support process migration by adding

two major features including:

• The migration table and message forwarding mechanism to handle point-to-point communi-

cation in a migration environment.

• Protocol to support data communications and signaling among the scheduler, the migrating

process, and the new process on the migrated machine.

Mlibpvm is a modified version of libpvm. It is a programming library containing subroutines for

supporting two different interfaces.

• Scheduler Interface, subroutines to monitor and control workload of the computing environ-

ment. These subroutines are used only by the scheduler. They include dynamic configuration

subroutines such as pvm_addhosts() and pvm_delhosts0, and process migration subroutines

17

such as mppvm_initialize() to initialize a new process at idle or lightly-loaded machines and

mppvm_migrateO to signal the migrating process to start its migration.

Application (or User) Interface, subroutines that are modified to support efficient distributed

computing in the migration environment. These are process control subroutines such as

pvm_spawn 0 and pvm_kill(), and message passing subroutines such as pvm_send0 and

pvm_recv 0. Since the process control subroutines can effect workload of the environment,

every request of these subroutines should be approved and supervised by the scheduler. The

message passing subroutines also need to be modified to cooperate with Mpd and to maintain

reliable data communication in a process migration environment.

5.1 Assumptions about the Schedulers

In a migration environment, the scheduler is required to have functions to control the dynamic

workload of the system. Therefore, additional assumptions regarding resource management in the

migration environment must be discussed.

Scheduler

j _

' Seheduler Interface

......................................

MIIbpvm User Interface

T : Parallel Process

H i : Host Machine

.......................................

Distributed Schedulers

(a) (b)

Figure 7. The overall structure of MpPVM virtual machine environment. (a) and (b) show two

environments where global and local schedulers are used to control load balancing of the system.

In Figure 7(a), all load balancing calculation and process migration are controlled by the global

scheduler. The scheduler could be either a server process implemented on a dedicated machine or

a simple user process residing on one of the virtual machine's hosts. On the other hand, the server

can also be implemented as a group of distributed processes residing on every host in the system

as in 7(b). These processes will exchange information and work together to control load balancing

of the system.

For the sake of brevity, the design and implementation of the scheduler are not discussed in this

paper. In any case, we assume the scheduler has the following functionalities:

18

• The scheduler must classify parallel processes running under its supervision into two types:

static and dynamic. A static process resides on one machine until its termination; whereas,

a dynamic process can migrate from one machine to another.

• The scheduler must exhaustively seek idle or lightly-loaded machines in the heterogeneous

environment and make underutilized machines ready for parallel application processes.

• To migrate a process, the scheduler must initialize a process at an underutilized machine

before notifying the migrating process to make a connection and transfer its data to the

new process. If the parallel process is already pre-initialized, the scheduler will send the

identification of the pre-initialized process to the migrating process. In this case, we can

substantially reduce the migration overhead.

• To maintain reliable data communication, in migrating a process, the scheduler must inform

every Mpd of processes that had communicated with the migrating process in the past or will

communicate with it in the future.

Based on these assumptions, the algorithm for the scheduler to perform process migration is

given in Figure 8.

migrate (task-id, task-name, current-host, destination-host){

-if task-name is not pre-initialized then

call mppvm_initializeO to initialize a new process in the

destination host.

-call mppvm_migrateO to send migration signal as well as

the initialized task id, TCP socket id, and related

information to the current Mpd and the migrating process.

-wait until the migration finishes.

-broadcast a pair of (task-id, destination-host) to every

Mpd in a processing group.

-wait until an acknowledgement signal is received

from every Mpd in the processing group.

}

Figure 8. An algorithm for the scheduler to control a process migration.

5.2 MpPVM data communications

In an Mpd, a daemon for each host in the virtual machine and a data structure called Migration

Process Table (MPT) are implemented. MPT, which contains a list of original task id's along with

the corresponding current host id, is used mainly to support data communication in a migration

environment. Every time a process sends messages to another process, the Mpd will scan through

19

its MPT table to find out the current machine of the target process. If it cannot find anything,

Mpd will assume that the target process has never been migrated to other machines before. Then,

the original PVM strategies of searching for a target machine will be employed.

Because MPT will be used extensively for data communication, the methodology to maintain

this table is very important. It must be handled efficiently and immediately at every migration

event. According to the algorithm in Figure 8, when migration occurs, the scheduler will check if

the process with the same "task name" has already been pre-initialized in the destination machine.

If not, an initialization will be performed on that machine. After that, the scheduler will send

the migration signal and other information such as task id, TCP socket id of the new process to

the migrating process and to the Mpd of the current machine. This current Mpd contacts the

destination Mpd and the migrating process to update their MPTs. Then, the migrating process

will open a TCP connection to the new task and start transferring its data.

At this point, the scheduler will wait until the migration is complete. After getting a "com-

pleted" signal from the Mpd of the new machine, the scheduler will broadcast the same migration

information to the Mpd of every host in the processing group. Upon receiving the information

every Mpd will modify its MPT. At the same time, the scheduler will wait for the acknowledge-

ment signals. After getting the signals from all Mpd's in the processing group, the scheduler will

continue its execution.

There are three possible communicating situations that may occur in this model during a

migration. They are:

If a message arrives at the current Mpd of the migrating process before the migration and

has not yet been read by a pvm_recv() function call, the Mpd will store these messages in its

buffer.

If a message reaches the current Mpd of the migrating process during the migration, it will

also be stored in the buffer. Once the migration is complete, the Mpd will flush this data to

the destination machine.

After migration, if the Mpd of the process that wants to send a message to the migrated

process has got the broadcast migration information from the scheduler and has updated its

MPT, the message will be sent directly to the Mpd of the new machine. Otherwise, the

message will be sent to the Mpd of the last host and then forwarded to the new machine.

Therefore, the faster we update the MPT of every Mpd in the same processing group, the

less we have to forward messages.

Before its termination, each parallel process will send a termination signal to the scheduler. The

scheduler will collect these termination signals until every process in the same processing group

is terminated. Then, it will broadcast signals to every Mpd of that processing group to delete

information of the terminated process from their MPT.

2O

6 Preliminary Implementation and Experimental Results

A few prototypes and experimental programs have been developed to test the correctness and

applicability of the design of MpPVM. Routines for transferring data and process states have also

been developed, pvmd and libpvm of PVM have been modified to support the experimental MpPVM

protocol.

In pvmd, we have implemented the MPT table and modified PVM point-to-point message pass-

ing mechanism to cooperate with the MPT. The Task-Pvmd and Pvmd-Pvmd protocols are also

modified to support signaling among the migrating process, the new process, and the scheduler. In

libpvm, a few subroutines for transferring data during process migration are implemented. These

data must be encoded into the XDR format before being transferred across machines in a hetero-

geneous environment. The migration subroutines which are needed by the scheduler are also added

to the libpvm library.

Based on the implemented prototype, we have conducted experiments to verify the feasibility

and applicability of the migration point and necessary data analysis in the MpPVM design. A

parallel matrix multiplication program with Master-Slave communication topology developed in

[13] was chosen for our experiments. Both the PVM and MpPVM versions of this program are

implemented. These two versions are different in that the MpPVM one contains a number of

migration points at various locations in the program. Both experiments are performed on the same

LAN environment consisting of four SUN Sparc IPC and fourteen DEC 5000/120 workstations.

The purpose of our first experiment is to verify the heterogeneous process migration of MpPVM

and to examine the performance degradation of the PVM version when parallel tasks have to

compete with local jobs for computing cycles. We assume that the new process at a destination

of a process migration is pre-initialized. Since process initialization involves many factors such as

disk accesses and NFS that might cause substantial amount of overhead, the availability of pre-

initialization allows a faster process migration. However, this assumption requires the scheduler to

have an efficient resource allocation policy in a migration environment.

In this experiment we ran four parallel processes on two SUN and two DEC workstations. One of

the two DEC workstations was the test site that had continued requests from the machine owner (or

other local users). When the workload on the test site increased, MpPVM migrated its process from

the test site to one of the unused SUN workstations on the network. In the competing situation, we

simulate the increasing workload of local computation by gradually adding light-weight processes,

i.e., programs with few floating-point operations and small data size, to share more time slices

from the CPU.

From Figure 9 we can see that MpPVM achieved a superior performance over PVM especially

when the owner's jobs request more CPU time. In 9(a), a 3x400 and a 400x3 matrix are multiplied

ten times. With competing local jobs, both parallel processing versions have an increased execution

time with the requests from the owner. However, the execution time increase of MpPVM is about

a one-half that of PVM when the machine owner actively uses the test site. This is because in

this implementation only one migration-point is used and is located at the half-way point of the

21

i
o

2O

18

16

14

12

10

8

6

4

2-

PVM _ /

MpPVM at 5_

=

!
I,.-

16
15
14

13
12
11

10
9

8
7

6
5
4

3
2

1

oi i , , i i i i , i i ,

4 8 12 16 20 24 28 32 36 4 8 12 16
(a) Requests from the machine owner (b) Requests from Ule machine Owner

2O

Figure 9. Comparisons of execution time between PVM and MpPVM matrix multiplication pro-

grams

total required computation. In 9(b), we still use the same configuration as 9(a) except that we

increase the order of the matrices to 3x1600 and 1600x3 respectively. As a result, the parallel

processing performance becomes more sensitive to the owner requests than in 9(a). In this test

we have developed two MpPVM programs which will migrate from the overloaded machine after

10 percent and 50 percent of their executions, respectively. The performance of migration at 10

percent is better than that at 50 percent since the process spends less time competing with the owner

computations. In general, the more migration points in a parallel program, the less the duration

of competing with local computation will be and, therefore, a better performance is achieved.

In the second set of experiments, the goal is to investigate the effects of process migrations when

both the problem and ensemble size scale up. Since we want to detect the degradation caused from

process migrations only, the tests are conducted in a dedicated environment 1.

We scale the problem size of the MpPVM matrix multiplication program with the number of

processors on 4, 6, 8, 10, and 12 workstations by following the memory-bounded scale-up principle 2

[14]. At each ensemble size, at most 3 and 5 slave processes are migrated when the program runs

on 4 and 6 workstations respectively; whereas, 6 slave processes are migrated when the program

uses a greater number of workstations. New processes of process migration were pre-initialized,

and overlapping of process migrations was prevented in this experiment. The experimental results

are depicted in Figure 10.

In Figure 10(a), each curve represents a relationship between execution time and the scaled

problem size, indicated by the number of workstations, at a specific number of process migrations

(m). At m -- 0, there is no process migration. Likewise, the curves at m = 1 to m = 6 give

the results with one to six process migrations, respectively. We can see that these curves increase

approximately in parallel. For example, the curve of m = 6 (migrate six times) grows in parallel

with the curve of m = 0 (no migration). Since the difference of execution time of m = 6 and m = 0

IThe tests were conducted at midnight on Friday when no one else was on the system.

2For the matrix multiplication A x B, the order of matrix A is 3x1600, 3x2400, 3x3200, 3x4000, and 3x4800 for

ensemble size 4, 6, 8, 10, 12 respectively. The order of matrix B is symmetric with respect to the order of matrix A.

22

8.5

8

7.5

7

6.5

6

5.5
5

4.5

4

3.5

3

2.5

2

1.5
4

11t=0
m=l
m=2
m=3
m=4
m=5

i i i

6 8 10
(a} Number of Workstations

12 6

8.5
8

i= 2.53"53'_ pp-4-

2 p=8

1.5 p=10
1 p=12

0.5

0 i I i i =

0 1 2 3 4 5

(b) Number of Migrations

Figure 10. Comparisons of execution times of MpPVM matrix multiplication programs when the

problem size scales up.

is the migration cost, we can conclude that the migration costs caused by six process migrations

at the scaled problem size on 8, 10, and 12 workstations are approximately the same. Therefore,

the migration cost is a constant and does not increase with the ensemble size in our experiments.

The execution time increase is mainly due to the increase of computation and communication, not

due to the migration cost.

Figure 10(b) further confirms that the migration cost does not increase with problem and

ensemble size. In this figure, different curves depict the relation between the execution time and

the number of process migrations at a specific ensemble size. We can see that the increase of

execution time with the number of process migrations is consistently small compared with the

computing and communication time. More importantly, the measured performance show that the

process migration mechanism is very efficient. With six process migrations on a cluster of twelve

workstations, for instance, the total process migration cost is less than one-half second. Thus, the

experimental results show that the proposed process migration mechanism is implementable and

practical in a distributed heterogeneous environment.

Process migrations have been prevented from being overlapped with each other or with compu-

tation and communication in our experiments. Process migration cost may be further reduced with

this overlapping. On the other hand, while experimental results are very encouraging, the results

are preliminary and based on certain assumptions. In our experiments, we assume the destination

processes in a process migration are pre-initialized. Thus, at a migration event, the migrating

process can transfer its data promptly to the destination process. Migration cost will be increased

if the new process is initialized during process migration.

Efficient process migration needs the cooperation of many components such as the scheduler,

the virtual machine (MpPVM), and the application processes. Performance of process migrations

also depends on many factors including the inherited properties of the applications, communication

topologies, network contentions, and efficiency of the scheduler. Since MpPVM is just one of the

components with certain functionalities to support process migration, certain assumptions and

limitations are unavoidable in current examination of the applicability and feasibility of its design.

23

Themeasured migration cost is only true for our application on our environment. It may vary with

the computation/communication ratio of the application and hardware parameters of the underlying

distributed platform, though we believe it represents the trend of general applications. Further

experiments are planned for other parallel applications with different computing and communication

structures.

7 Conclusion and Future Work

We have introduced a high-level mechanism and its associated methodologies to support efficient

process migration in a non-dedicated, heterogeneous network computing environment. The newly

proposed network process-migration mechanism is general. It can be applied to any distributed

network environment. In particular, based on this mechanism, a software system named MpPVM

has been designed and implemented to support efficient process migration for PVM application

programs. We have studied the interaction between process migration and resource management

and proposed modifications of pvmd and pvmlib of PVM to maintain reliable data communication

among processes in a migration environment. Our implementation and experimental results con-

firm the applicability and potential of the proposed mechanism in a non-dedicated heterogeneous

environment. Experimental results indicate the MpPVM software system is efficient and is scalable

in the sense that it can carry out a process migration in tenth of milliseconds and the migration

costs becomes less notable when the problem and ensemble size increase.

The implementation of MpPVM is still preliminary. The Mpd and Mlibpvm need to be improved

to maintain high reliability and efficiency on various parallel applications. The MCL software and

its supporting tools are also under development. To support an effective process migration environ-

ment, an efficient scheduler which controls workload of the distributed environment is inevitable.

We plan to develop a scheduler that can efficiently exploit process migrations in a non-dedicated,

heterogeneous computing environment. The performance evaluation and prediction according to

effects of process migrations on various algorithms and heterogeneous platforms will also be inves-

tigated.

With the rapid advance in network communication, the concept of "virtual enterprise" network

computing is becoming increasingly prevalent. That is, with certain agreement, computers on the

network can use each others unused computing resources to speedup performance. Network process

migration is indispensable for virtual enterprise computing. Our newly proposed process migration

mechanism is important because it is the only mechanism available to support heterogeneous,

point-to-point network process migration on top of existing distributed systems. The MpPVM

software is a part of the SNOW project 3 (Scalable virtual machine environment for non-dedicated

heterogeneous Networks Of Workstations) under development at Louisiana State University. We

believe that the development of MpPVM and SNOW will have an important impact on the design

of future software environments for virtual network computing.

3More information regarding the SNOW project can be found at http://bit.csc.lsu.edu/'scs.

24

Acknowledgment

The authors are grateful to A. Beguelin of Carnegie Mellon University for his help on understanding

the implementation of PVM and on related work in process migration in a distributed environment.

References

[1] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam, PVM: Parallel

Virtual Machine - A Users Guide and Tutorial for Networked Parallel Computing. MIT Press,

1994.

[2] A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam, "Recent enhancements

to PVM," The International Journal of Supercomputer Applications, vol. 9, pp. 108-127, 1995.

[3]

[4]

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the

Message Passing Interface. MIT Press, 1994.

M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor-a hunter of idle workstations," in Pro-

ceeding of the 8th IEEE International Conference on Distributed Computing Systems, pp. 104-

111, June 1988.

[5] J. Casas, R. Konuru, S. Otto, R. Prouty, and J. Walpole, "Adaptive load migration systems
for PVM," in Proceedings of Supercomputing'94, pp. 390-399, 1994.

[6] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole, "Mpvm: A migratable

transparent version of PVM," Tech. Rep. CSE-95-002, Oregon Graduate Institute of Science

and Technology, Dept. of Computer Science, Feb. 1995.

[7] G. Burns, R. Daoud, and J. Vaigl, "Lam: An open cluster environment for MPI." Available

at ftp:://tbag.osc.edu/pub/lam/lam-papers.tar.Z.

[8] F.-C. Cheng, P. Vaughan, D. Reese, and A. Skjellum, The UNIFY system, version 0.9.2 ed.,

Sept. 1994.

[9] J. N. C. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan, "Dome:

Parallel programming in a multi-user environment," Tech. Rep. CMU-CS-95-137, Carnegie

Mellon University, School of Computer Science, Apr. 1995.

[10] M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor-a hunter of idle workstations," in Pro-

ceeding of the 8th IEEE International Conference on Distributed Computing Systems, pp. 104-

111, June 1988.

[11] B. Randell, "System structure for software fault tolerance," IEEE Transactions on Software

Engineering, vol. 1, pp. 220-232, 1975.

[12] J. S. Plank, M. Beck, G. Kingsley, and K. Li, "Transparent checkpointing under UNIX."

Appearing in USENIX Winter 1995 Technical Conference, Jan. 1995.

[13] A. Beguelin, E. Seligman, and M. Starkey, "Dome: Distributed Object Migration Environ-

ment," Tech. Rep. CMU-CS-94-153, Carnegie Mellon University, School of Computer Science,

May 1994.

25

[14] X.-H. Sunand L. Ni, "Scalableproblemsandmemory-bounded speedup," J. o] Parallel and

Distributed Computing, vol. 19, pp. 27-37, Sept. 1993.

26

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicreportins burdenfor this collectionof information isestimated,to averageI ho_Jrperresponse.,including the timefor .rev.'.m_."nK.instructions:searchln|existingdata sour.o_.
gatheringand meintainin_ the data needed,andcompletingand revllwnKthe .c_lectlonof mformatio_._ commentsreprd.iogth*s.I)ur_mest!mateor anyother _ _ this
collectio_of information,_e<ludingsuggestionsfor reducingthis burden,to WashingtonHead(luartets=erv_.es,uirectoratetot ;r_rrnat_0nuperat_es a.nd.Keports,1215 Jewe_on
DavisHighway,Suite 1204, AdinKton,VA 22202-4302,andto the Officeof Managementand Budget,PaperworkReduct_nProject(0704-0186), WashmKton,DE 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 1 3. REPORT TYPE AND DATES COVERED

December 1996 I Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

EFFICIENT PROCESS MIGRATION FOR PARALLEL PROCESS-

ING ON NON-DEDICATED NETWORKS OF WORKSTATIONS

6. AUTHOR(S)

Ka_dit Cha_cl_o

XJan-He Sun

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NASI-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE ReportNo. 96-74

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201636

ICASE Report No. 96-74

11. SUPPLEMENTARY NOTES

Langley TechnicalMonitor:DennisM. Bushnell
FinalReport
To appearinthe ProceedingsoftheInternationalConferenceon ParalldProcessing'96.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

This paper presents the design and preliminary implementation of MpPVM, a software system that supports process

migration for PVM application programs in a non-dedicated heterogeneous computing environment. New concepts of

migration point as well as migration point analysis and necessary dater analysis are introduced. In MpPVM, process

migrations occur only at previously inserted migration points. Migration point analysis determines appropriate

locations to insert migration points; whereas, necessary data analysis provides a minimum set of variables to be

transferred at each migration pint. A new methodology to perform reliable point-to-point data communications in

a migration environment is also discussed. Finally, a preliminary implementation of MpPVM and its experimental

results are presented, showing the correctness and promising performance of our process migration mechanism in

a scalable non-dedicated heterogeneous computing environment. While MpPVM is developed on top of PVM, the

process migration methodology introduced in this study is general and can be applied to any distributed software

environment.

14. SUBJECT TERMS

DistributedProcessing;Non-DedicatedHeterogeneousComputing;

Software Environment; Process Migration; PVM

11. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

_ISN 7540-01-2B0-5500

15. NUMBER OF PAGES

28
16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Foem 29E(Rev. 249)
Prescribedby ANSI Std. Z39-18
298-102

